
Generic matrix multiplication for multi-GPU
accelerated distributed-memory platforms over

PARSEC
Thomas Herault∗, Yves Robert∗, George Bosilca∗ and Jack Dongarra∗

∗ Innovative Computing Laboratory (ICL), University of Tennessee Knoxville, USA
† ENS Lyon, France

Abstract—This paper introduces a generic and flexible matrix-
matrix multiplication algorithm C = A× B for state-of-the-art
computing platforms. Typically, these platforms are distributed-
memory machines whose nodes are equipped with several ac-
celerators. To the best of our knowledge, SLATE [9] is the only
library that provides a publicly available implementation on such
platforms, and it is currently limited to problem instances where
the C matrix can entirely fit in the memory of the GPU accelera-
tors. Our algorithm relies on the classical tile-based outer-product
algorithm, but enhances it with several control dependencies to
increase data re-use and to optimize communication flow from/to
the accelerators within each node. The algorithm is written with
the PARSEC runtime system, which allows for a fast and generic
implementation, while achieving close-to-peak performance.

Index Terms—Linear Algebra, Accelerator architectures, Run-
time environment

I. INTRODUCTION

As of today, the Summit and Sierra systems [16] are
the fastest machines on the TOP500 list [23]. Both sys-
tems are distributed-memory platforms where each node is
equipped with several high performance NVidia accelerators.
For instance Summit nodes include 6 NVIDIA V100 GPUs,
interconnected at the node level by multiple NVLinks. The
forthcoming Frontier exascale system [16] is announced with
four GPUs per node. On Summit, more than 97% of the overall
compute performance is on the GPU side. The trend is the
same for all state-of-the-art platforms equipped with multi-
GPU accelerated nodes: these machines draw most of their
computing power out of the accelerators; hence, it is crucial,
for any efficient and scalable algorithm, to be able to extract
the most performance out of the accelerators to achieve global
efficiency. Several on-going projects aim at designing dense
linear algebra kernels for these platforms, let alone to provide
TOP500 performance and ranking.

Thus, it is critical that one of the most basic operations
in dense linear algebra, the matrix-matrix multiplication, has
an efficient implementation, whatever the size of the input
matrices, on such architectures. To the best of our knowledge,
the only publicly available library for dense linear algebra ker-
nels on multi-GPU accelerated distributed memory platforms
is SLATE [14], [9]. The current implementation only supports
a limited number of operations in a multiple-accelerator setting
and has size limitations: for instance the matrix product C =
AB prototype is limited to problem instances where the entire

C matrix can reside in the memory of the GPU accelerators. On
Summit with 6 GPU with 16 gigabytes of memory each, each
node can store a double precision floating-point submatrix C
(with 8-byte coefficients) of size N×N, where N ≈ 40,000
(leaving a quarter of the memory for A and B elements).

The main contribution of this work is the design of a generic
and flexible matrix-matrix multiplication algorithm C = A×B
for multi-GPU accelerated distributed-memory platforms, for
matrices unrestricted by the size of the GPU memory. Our
algorithm relies on the classical tile-based outer-product al-
gorithm, but enhances it with several control dependences
to increase data re-use and optimize communication flow
from/to the accelerators within each node. The algorithm is
written within the PARSEC runtime system, which allows for
a fast and generic implementation portable across a variety of
architectures, while achieving a sustained performance close
to the practical peak of the machine.

The rest of the paper is organized as follows. Section II
overviews the main design principles of our algorithm. An an-
alytical count of the number of inter-node and node-accelerator
communications is given in Section III. Then Section IV
discusses the main details of the prototype implementation,
which is publicly available [4]. In Section V, we report
preliminary performance results. Section VI briefly discusses
related work. Finally, Section VII is devoted to concluding
remarks and directions for future work.

II. DESIGN PRINCIPLES

In this section, we outline the general layout of our matrix
multiplication algorithm, which obeys simple design princi-
ples, and whose architecture is inspired by out-of-core imple-
mentations [22], [18], [13]. Table I shows the key notations.

We partition the original matrices into square tiles, which
we distribute among the participating processes. A coarse grain
view of the platform is a 2 dimensional grid of computing
nodes, for which the standard 2D-cyclic layout of tiles is
enforced. Let A(M,K), B(K,N), and C(N,N) be the three
matrices, regularly tiled into square tiles of size t2, and
assigned with a 2D-cyclic distribution of tiles onto a grid of
processors of size p×q. For simplicity, assume that t divides
M, K and N and let Mt = M/t, Kt = K/t and Nt = N/t be the
number of tiles in each dimension. We consider a processor
grid of size p× q, where p divides Mt and q divide Nt . The

TABLE I: Key Notations

Notation Explanation

M, K, N size of input matrices A(M,K), B(K,N), C(M,N)
t tile size (tiles are square)
Mt , Kt , Nt matrix sizes expressed in tiles
p×q size of processor grid
G number of accelerators per node
b× c size of C blocks
d depth of chunk
(x,y,z) index of chunk, 0≤ x < X , 0≤ y < Y , 0≤ z < Z
X = Mt

bp number of C blocks across rows
Y = Nt

cq number of C blocks across columns
Z = Kt

d number of chunks per C block
` value of lookahead in terms of chunks

standard outer product algorithm [1], [24], [6], [5] goes as
follows.

Let (u,v) denote the position of node number qu+ v on
the grid, with 0 ≤ u < p and 0 ≤ v < q. Node (u,v) initially
hosts all the tiles Ai, j, Bi, j and Ci, j whose indices satisfy to
i = u mod p and j = v mod q, and is in charge of computing
all these Ci, j tiles. At step k of the algorithm (iteration k of
the outer loop), tiles Ai,k are broadcast horizontally: there are
p parallel broadcasts, initiated by each node on column kq = k
mod q on the grid: each processor of index (u,kq) broadcasts
its local Nt/p tiles Ai,k across its grid row. Similarly, tiles
Bk, j are broadcast vertically, and there are q parallel broadcast
across grid columns. Then all processors update their local
Ci, j matrices. In several implementations, the broadcasts at
each step are organized as pipelined ring algorithms, but any
broadcast tree can be used.

The outer loop is described as sequential, but in general
there is no synchronization enforced across the nodes, and
the progression of each node can be kept independent. Also,
overlapping the communications of the next step(s) with the
computations of the current step is a classical approach to
ensure that nodes are kept active all the time. In fact, the nodes
have become so powerful (being multi-GPU accelerated) that
prefetching tiles of the A and B matrices is key to performance.
Runtime task systems such as StarPU [2] or PARSEC [3]
are able to determine that all Ai,k and Bk, j tiles are read-only
input data that are ready to be sent to the processor owning
tile Ci, j at the very beginning of the execution. This triggers
all the broadcasts in the whole algorithm, meaning that each
node ends up receiving (and storing) Mt/p rows of A and
Nt/q columns of B. Such an eager communication scheme
completely floods the communication network, leading to a
drop in performance.

To avoid this congestion phenomenon, a simple solution is
to partition the C matrix into blocks and to (logically) compute
one block after the other. We use local blocks of size b× c,
which means that each processor is in charge of b× c tiles
of C within a block. Globally, each block is of size bp× cq.
Assume that bp divides Mt and cq divides Nt for simplicity,
and let X = Mt/(bp) and Y = Nt/(cq). Here, b and c are
design-parameters, that will be tuned to enhance locality and
re-use, as discussed in Section III below. Altogether, the blocks
have indices (x,y) ranging as follows: 0 ≤ x < X , 0 ≤ y < Y .

The blocked version writes as shown in Algorithm 1.

Algorithm 1: Blocked outer product algorithm.

for y = 0 to Y −1 in sequential:
for x = 0 to X−1 in sequential:

Compute block (x,y) of C:
for k = 0 to Kt −1 in sequential:

forall i = x(bc) to (x+1)(bc)−1,
j = y(cq) to (y+1)(cq)−1 in parallel do

Task GEMM(i, j,k): Ci, j =Ci, j +Ai,kBk, j

The end of each C block can be viewed as a synchronizing
barrier: only those tiles of A and B that are needed for the
current block are communicated across the network. This
corresponds to bp rows of A and cq columns of B. The main
idea is to choose b and c so that bKt tiles of A and cKt tiles of B
would fit in the main memory of each node, in addition to the
bc tiles of C. This leads to a total of T (Kt)= (b+c)Kt +bc tiles
that need to reside in the main memory of each node. Note that
this global barrier is only logical. We actually implemented a
lookahead version, as explained below.

Now consider the integration of accelerators. For large
problems (with large Kt), T (Kt) tiles will not fit in the memory
of the accelerators. To ensure a good data-re-use, we further
control the execution of each block by partitioning the internal
k loop into chunks of length d, where d is the third parameter
of the algorithm. Assume that d divides Kt and let Z = Kt/d.
Inside block (x,y), chunks are labeled (x,y,z), where 0≤ z<Z.
The algorithm with chunks writes as shown in Algorithm 2.

Algorithm 2: Chunked blocked outer product algo-
rithm.
for y = 0 to Y −1 in sequential:

for x = 0 to X−1 in sequential:
Compute block (x,y) of C:
for z = 0 to Z−1 in sequential:

Compute chunk (x,y,z):
for k = zd to (z+1)d−1 in sequential:

Broadcast d elements of kth row of A
and kth column of B

forall i = x(bc) to (x+1)(bc)−1,
j = y(cq) to (y+1)(cq)−1 in
paralleldo

Task GEMM(i, j,k):
Ci, j =Ci, j +Ai,kBk, j

Again, the execution of each chunk terminates by a barrier,
local to the node, to prevent that too many elements of A and B
to be loaded from main memory to GPU memory. This barrier
controls the amount of tiles that are active on a GPU at a given
time, but does not enforce synchronization between nodes.
Now each chunk requires each node to hold bc tiles of C, and
(b+ c)d tiles of A and B, for a total of T (d) = bc+(b+ c)d
tiles. Figure 1 gives a visual representation of these values.

In the chunked version of the algorithm, the global barrier
is enforced after each chunk (x,y,z), before beginning the

G0

G0

G1

G1

Nt

Kt

Kt

Mt

c ·q

c ·q

b · pb · p
pp

q

q

d

d

y

x

z−1 z z+1

z−
1

z
z
+

1

Fig. 1: Major variables used in Algorithm 2.

computations of the GEMMs that belong to the next chunk
succ(x,y,z). More precisely, each node (u,v) in the processor
grid reaches a local barrier of index (x,y,z,u,v) at the end
of chunk (x,y,z), and this local barrier introduces a control
dependency to the global barrier of index (x,y,z), which in
turns enables the inputs needed for the GEMMs of the next
chunk succ(x,y,z) for each node. In Algorithm 2, succ(x,y,z)
is computed as follows:

• if z < Z− 1, then succ(x,y,z) = (x,y,z+ 1): we proceed
to the next fraction of computations for the current block
of C;

• if x < X − 1, succ(x,y,Z− 1) = (x+ 1,y,0): we start the
next block of C, which involves the same columns of B
but requires new rows of A;

• if y < Y −1, succ(X −1,y,Z−1) = (0,y+1,0): we start
the next block of C, which requires new columns of B
(and new rows of A).

The lookahead version of Algorithm 2 is implemented
as follows: at the end of chunk (x,y,z), each local barrier
of index (x,y,z,u,v) points to the global barrrier of index
succ(`+1)(x,y,z) instead of pointing to the global barrrier
of index (x,y,z). Here, succ(`+1)(x,y,z) denotes the `+ 1-st
successor of (x,y,z). The lookahead parameter ` is the fourth
(and last) parameter of the algorithm; it is introduced to allow
for prefetching the input data needed for the `+1 next chunks
while computing GEMMs of the current chunk. We only
prefetch input data, not the next block of C. Prefetching is
more costly when the successors of (x,y,z) involve a different
value of y, because B tiles of two different blocks will co-exist
in memory. In the general case, prefetching with ` requires
`(b+ c)d extra input tiles (from A or B) to fit in memory.

Finally, let G be the number of accelerators per node (G= 6
for Summit). Assume that G divides c for simplicity. Inside
each node, we allocate columns to accelerators in a wrap-

around (cyclic) fashion, so that accelerator g of node (u,v) is
in charge of computing columns j = v+ qg mod (qG) of C.
Within a block of C, each accelerator is in charge of b rows
and c

G columns of C. Hence T (d,G) = b c
G +(b+ c

G)d tiles
must fit into the memory of each accelerator to be able to
compute a full chunk without swapping.

III. COMMUNICATION VOLUME

In this section, we analytically compute an estimate of the
number of tiles communicated across nodes on the network,
and from main memory to accelerator memory within a node.

A. Problem size

Let Memnode be the available memory per node and
MemGPU be the available memory per accelerator (GPU). We
express these quantities in double-precision words rather than
bytes to ease the conversion into matrix sizes. On Summit,
Memnode = 64 ·109 doubles and MemGPU = 2 ·109 doubles.

First, what is the size of the largest problem that fits within
a single node? Assume square matrices with M =K =N, there
are 3N2 coefficients that must fit in the node memory, hence
3N2 ≤Memnode. We find N ≈ 145,000. Now, what is the size
of the largest problem whose size would allow the entire C
matrix to fit within the available memory of the G accelerators
of a node? The G= 6 accelerators can accommodate a block of
C of size, say, 90K×90K (and we would for instance partition
the columns across the GPus, allocating a rectangle of size
90K×15K per GPU). Such a C block would fill three-quarters
of the memory of the G= 6 GPUs, leaving some space to store
few matching A and B tiles. With a square p× p grid of nodes
and square matrices of size N, we need that N ≤ 90,000× p
for the C matrix to entirely reside in the GPU memory of the
Gp2 available GPUs.

B. Communications

We discuss in terms of tiles of size t to clarify the discussion.
Consider a p× q grid of processes and let Mt , Kt and Nt be
the total number of tiles in each dimension.

1) Inter-node transfers: How many inter-node communica-
tions are triggered by the algorithm? There are X×Y blocks of
C, each b rows and c columns on each processor. Hence X =
Mt
bp and Y = Nt

cq . Each block can be accounted for independently.
Consider a given block owned by process P. For each block,
we need to communicate b full rows of A and c full columns of
B to process P. Although these communications are partitioned
into chunks of size d, we can view them globally. Process P
already owns the 1/q-th fraction of each of these b rows of A
and the 1/p-th fraction of these c rows of B. This means that
we send bKt(1− 1

q) tiles of A and cKt(1− 1
p) tiles of B onto

process P. Note that these sends are usually implemented as
part of broadcasts, but we focus on the volume of inter-process
communication here. There is no inter-process communication
involving C tiles. Altogether, process P receives (b(1− 1

q)+

c(1− 1
p))Kt tiles per block of C, and it has XY blocks,

hence receives Commprocess = (b(1− 1
q)+c(1− 1

p))KtXY tiles.
With pq processes, the grand total is Commtotal = (b(1− 1

q)+

c(1− 1
p))KtXY pq =

b(1− 1
q)+c(1− 1

p)

bc MtKtNt . Rather than being
communication-avoiding, our algorithm is communication-
redundant. We voluntarily transmit the same data several times,
namely Y times for an A tile and X times for a B tile; this
the price to pay to control locality, data re-use, and allow the
computation of very large products.

2) Intra-node transfers: Now how-many communications
from the memory of each node to the memory of the acceler-
ators? Each tile of C is read either zero time (for C =AB or one
time (for C =C+AB) and written back once. Again, consider
one block of b rows and c columns of C onto one process.
The tiles of B are partitioned across the accelerators, so each
of them receives the 1/G-th fraction of the needed cKt tiles of
B (we had cKt(1− 1

p) before with inter-node communications,
but now we also need to send the tiles local to the process
onto the accelerators). Furthermore, each accelerator receives
bKt tiles of A, be it from the main memory of the node or
from other accelerators from the NVIDIA link.

Altogether, there are several cases, depending upon the
problem size. Overall, the number of tile transfers CommGPU
to each GPU is given by the following equation (see [11]:

CommGPU =



(a)Mt Kt
p + Kt Nt

qG + Mt Nt
pqG

if Mt Kt
p + Kt Nt

qG + bc
G ≤MemGPU

(b)Nt
cq

Mt Kt
p + Kt Nt

qG + Mt Nt
pqG

if bd + cKt
G + bc

G ≤MemGPU

(c)Nt
cq

Mt Kt
p + Mt

bp
Kt Nt
qG + Mt Nt

pqG
if bd + cd

G + bc
G ≤MemGPU

(1)

3) Optimal values for parameters b, c and d: In our
implementation of Algorithm 2, we always aim at loading the
largest possible block of C that will fit in the memory of the
GPUs. This is because the larger the block, the more intensive
the data re-use, as shown by numerous studies [22], [18], [13].
This is also confirmed by the number of transfers reported in
case (c) of Equation (1): each tile of A is loaded X = Mt

bp times,
and we aim at minimizing X . Similarly, each tile of B is loaded
Y = Nt

cq times, and we aim at minimizing Y . Typically, we use
b = c for square matrices, because square blocks are more
prone to data re-use than rectangles. We compute the values
of b and c to ensure that b× c

G tiles of C will occupy, say,
three quarters of the memory of each GPU. There are two
sub-cases:
• Case (c1): The simplest case is when b= Mt

p and c= Nt
q , i.e.,

when the entire C matrix fits in the memory of the accelerators.
In that case, depending upon the amount of leftover memory,
we will be able to: (i) either load A and B entirely , and hence
only once (case (a)); or only c

G full columns of B, and A tiles
will cycle and be loaded several times; or both A and B will
have to cycle, because we can only keep bd+ cd

G + bc
G tiles in

memory (case (c)). Note that case (a) is for small problems
only, and case (b) is unlikely to happen.
• Case (c2): This is the general case for large problems when
we have to partition C into several blocks because the whole
C would not fit into the GPU memories. In that case, X > 1,
Y > 1, and A and B are loaded several times.

In both cases (c1) and (c2), once we have chosen b and c
as large as possible, we proceed by chunks of depth d, hence
we need additional space for bd tiles of A and cd tiles of B:
we choose d as large as possible while enforcing the condition
bd + cd

G + bc
G ≤MemGPU .

4) Lookahead parameter `: Finally, we point out that using
a lookahead further constrains the memory: with ` = 1, we
need space for (b+ c)d additional tiles in the general case,
that of continuing the computations for the same block of
C. Section V shows that ` = 1 is enough to ensure good
performance when there is a single block of C (case c1)).
However, when C is partitioned into several blocks, we also
need to renew the C tiles. When moving to the next block of
C, and these additional transfers cannot be fully overlapped
with the computations of a single chunk, so we use `= 2 for
case c2).

IV. IMPLEMENTATION

In this section, we detail some implementation elements that
are key to understand the performance of the algorithm.

A. Adaptation of the runtime system to the target architecture

The target architecture, featuring multiple accelerators per
node, becomes easily unbalanced in favor of computations,
compared to communications. For example, on Summit, with
six GPUs per node, and two P9 sockets, the bandwidth
between a GPU and the closest socket is 50GB/s, but data
flowing from one GPU to the farther socket or to a GPU
close to the other socket need to transit through the X-Bus
that links the two P9 sockets. Since this bus has a maxi-
mum bandwidth of 64GB/s, it can become easily contended.
Similarly, to pull or to push data from and to RAU needs
to transit through at least one P9 bus, and may need to
use the X-Bus between the two sockets. These architectural
constraints encourage two steps in the implementation and
deployment of the runtime system that supports the matrix
multiplication algorithm: first, it is highly beneficial to reduce
communications that transit through the X-Bus, and this can
easily be achieved by deploying the runtime system with two
processes per node (one process per socket). This way, each
node of two sockets and 6 GPUs is presented to the algorithm
and the runtime as two entities, each with a single socket
and 3 GPUs. All data sent explicitly by the runtime system
from one process to the other can transit through the X-
Bus, but only these data will transit through it; hence there
will be no contention created by eager scheduling policies
that pull remote data through complex paths in the node.
An added benefit of this deployment is that it doubles the
number of progress threads for the communication subsystem
of the runtime system, enabling it to reach the peak network
bandwidth of the hardware, and reducing the contention on
the progress queues of the underlying communication system.

The second step taken to increase the performance of
the runtime system over this architecture is to enable direct
Device-to-Device communications. In the PARSEC program-
ming paradigm we used, communications are implicit: they are

deduced by the runtime system, from the data flow itself, and
implemented in the background, while other tasks progress.
PARSEC manages these transfers by keeping a trace of the
data movements through a set of meta-data, called the data
copies. A data copy is a particular instance of a user data,
that can reside on a given device. Multiple data copies that
represent the same or different versions of the same user data
on one or multiple devices are connected under a same set,
called a user data. The data flow engine passes data copies
between tasks, and instantiates each copy on the target device
when it decides to run a task on it. By default, all initial
data copies reside in the main RAM, when they are initially
generated by the user, or received from the network during the
distributed progress of the data flow execution.

We extended the PARSEC runtime to implement an op-
portunistic strategy: when the runtime system detects that
a new data copy needs to be instantiated on a given GPU
(typically it did not find a data copy with the appropriate
version number on the target device, either because that copy
was never uploaded, or because it was reclaimed to allow for
another computation), it first searches on the other devices of
the same type if another data copy with the appropriate version
exists. If such a copy is found, its usage count is updated to
prevent the alternative source device to release it, and a device
to device transfer using the NVLink capabilities of CUDA is
scheduled. Once the copy is instantiated on the target device,
the usage count of the copy on the source device is updated,
potentially triggering its release in the LRU cache, as was
already implemented in the runtime system.

B. Adaptation of the programming language

In order to guarantee that the input parameters b,c, and d
will allow maximum reuse and minimal data movement, not
only must the implementation guarantee that only tasks that
pertain to specific data can execute at a given time, but also
that the distribution of work between the accelerators remains
fixed. The first point is ensured by the additional control flow
that is embedded in the algorithm; the second point, however,
needed some extension of the Programming Language. Indeed,
work assignment between the different computing devices of
a same process is usually opportunistic in PARSEC: work
stealing is the default behavior of all computing devices,
including the GPU managers.

PARSEC, however, follows a last-writer heuristic for GPU
work-scheduling in order to minimize the data movement: if
a given data has been accessed read-write recently, and its
corresponding most recent copy is residing on a given GPU,
that device is the only one that can execute another task that
accesses the data in read-write mode, until an explicit update of
the RAM data copy is requested by the user. We leveraged this
policy to statically assign the device that can work on a given
block of C, by extending the programming language to allow
for the explicit creation of a data copy generated by a task onto
a given device. Thus, the GEMM implementation is modified
so that each new chain of updates of a given tile starts on a
specific device, computed according to the algorithms above.

Then, as the algorithm leaves that tile of C resident onto the
same GPU until all updates have been applied, all the work on
that tile is guaranteed to be assigned to the same accelerator.

V. PERFORMANCE EVALUATION

Performance measurements are conducted on Summit,
which has over 200 Petaflops of double precision theoretical
performance [16] hosted at Oak-Ridge National Laboratory. It
consists of 4,600 IBM AC922 compute nodes, each containing
two POWER9 CPUs and six Nvidia Volta V100 GPUs. The
POWER9 CPUs have 22 cores running at 3.07 GHz, and 42
cores per node are made available to the application. Dual
NVLink 2.0 connections between CPUs and GPUs provides
a 25GB/s transfer rate in each direction on each NVLink,
yielding an aggregate bidirectional bandwidth of 100GB/s.

The program evaluated below implements Algorithm 2 over
the PARSEC runtime system [3], using the Parameterized
Task Graph (PTG) DSL featuring the extensions described in
Section IV. The algorithm implementation, the driver program
and the extensions are all available online in a fork repos-
itory [4]. The PARSEC runtime, the GEMM operation and
the driver program were all compiled in optimized (Release)
mode, using XLC 16.1.1-2, CUDA 9.2.148, Spectrum MPI
10.3.0.0 available on the Summit programming environment.
The BLAS3 GEMM kernel was the one provided in the
cuBLAS library provided with CUDA.

We measured the practical peak of the GEMM kernel in this
version of cuBLAS and this hardware at 7.2TFLOP/s per GPU.
To obtain this value, we ran a single GEMM operation on large
matrices that were pre-initialized in the GPU memory, repeated
the operation 10 times, and took the fastest run measured.

All performance evaluation results presented below are
obtained by measuring the time of executing the parallel
double precision real matrix matrix multiply (PDGEMM) with
all data residing in the main memory of the nodes (and nothing
on the GPU memory). The operation is complete only when
the resulting C matrix is back in the main memory of the
node, where it started. Thus, the cost of data movement from
CPU to GPU memory is included in our measurements, but the
experiment reflects a more traditional usage of the PDGEMM
routine, where the data was made available by a previous
operation in main memory. Each point is measured 5 to 10
times, and all figures showing performance present a Tukey
box plot at the mark. On most figures, the measured variability
is so small that the box plot is hidden by the mark or the
line placed at the mean value, highlighting the stability of the
distributed algorithm.

A. Single node runs

First, we consider single node runs in order to find the op-
timal tile size for the kernel implementation and the available
hardware. Figure 2 shows the performance per GPU, of a
square GEMM of size M = K = N = td 70,000

t e (or equivalently
Mt = Kt = Nt = d 70,000

t e), for different values of the tile size t
on the x-coordinate, and for 1 to 6 GPUs. At this size, each
matrix represents 36 GBytes of memory, and the algorithm

 0

 1

 2

 3

 4

 5

 6

 7

 8

 200 400 600 800 1000 1200 1400 1600

P
e
rf
o
rm
a
n
c
e

 p
e
r
G
P
U

 (
T
F
lo
p
s
/s
)

Tile Size (t)

1 GPU
2 GPUs
3 GPUs
4 GPUs
5 GPUs
6 GPUs

Fig. 2: Performance per GPU of double precision GEMM

has to cycle A and B, with a stationary C (case c1)). When
running with 1 to 3 GPUs, even the matrix C is too big, and
it must be cycled by the algorithm (case c2)). The parameters
b,c and d are chosen as described in Section III-B3: b = c,
b× c is a divisor of Mt

G , and b× c
G occupies at most three

quarters of the GPU memory. Then d is chosen as a divisor
of Kt such that bd+ cd

G + bc
G tiles fit in the GPU. This run uses

a single process to control up to 6 GPUs, incurring potential
NUMA effects and overload of the X-bus.

As expected, performance grows with the tile size up to
a plateau. This is consistent with the traditional roofline
model [25]: until a tile size of t = 1,024, the cost of memory
transfers dominates the execution time, and there is not enough
data reuse on the accelerators to keep them working at
maximal efficiency. As soon as a tile size of 1,024 is reached,
the arithmetic intensity of the operation is high enough to
mask all RAM to GPU memory communication costs, and
the performance plateau.

The performance per GPU remains close to the practical
peak (¿95% for tile sizes bigger than 1,024), for 1 to 3 GPUs,
showing excellent strong scalability at this problem size. When
adding more GPUs, from 4 to 6 (maximum available on
the hardware), the performance per GPU drops slightly but
remains high at 85%. The issues due to X-bus usage and longer
times to upload or download memory between the GPUs and
the RAM depending on the NUMA bank and the target GPU
also translate in a higher variability of the measurements: at 6
GPUs, the first quartile of the runs can get up to 17% slower
than the mean value. This performance drop and variability
increase is justified by the hardware, and motivates that the
other experiments allocate two PARSEC processes per node.
Based on this evaluation, we also select a tile size t = 1,024
for all subsequent experiments.

B. Distributed runs

We evaluate the implementation on square grids of pro-
cesses. Since two processes are assigned the same node,
the grid of nodes is p× p

2 : two consecutive processes on
the process grid are sharing the same tile-rows of the three
matrices. Figure 3a shows the performance measured for
different problem sizes, using different process grids, and
different values of the lookahead.

The problem size is represented with the x-coordinate, and
the colors of the lines define the process grid size, from 2×
2 (12 GPUs) to 12× 12 (432 GPUs). Mean values for the
measurements are represented with different markers: a plus

represents the case a) above, when the data fit on the GPU
memory. A single run in the 2× 2 process grid experiments
falls in that category. Then, a star represents the case (c1):
C is distributed amongst the GPUs and remains static, with
parts of A and B cycling multiple times from RAM to GPUs,
in order to complete the product. Last, squares represent the
case (c2): C itself is too large to fit on the GPU memory, and
needs to be cycled with A and B. Last, a plain line links the
runs made with a lookahead ` = 1, while some runs with a
lookahead `= 2 are linked together with a dashed line.

In all the runs, the parameters b,c, and d are selected
according to the strategy described in Section III-B3: first, we
aim at leaving C static on the GPUs, until it is not possible
anymore, in which case C is split into even blocks of size b×c
with c = b, and then d is used to fill the GPU memory with
even chunks of A and B.

With the problem size increasing, and up to the point
where it reaches the case (c2), the measured performance is
consistent with the roofline model: performance grows with
the problem size, until it reaches a plateau. Up to a process
grid of 6× 6, this plateau is maintained, even when the task
system transits from the case (c1) to the case (c2). Almost no
performance degradation is measured during that transition.
For the larger runs, however, a steep performance drop is
observed when this transition happens. As the scale of the
system increases, that drop increases. Then, the performance
grows again until it reaches the same plateau.

As illustrated in Figure 3a, that performance drop is due to
a small lookahead parameter. With a lookahead ` = 1 (plain
lines), only the data necessary for the execution of the next
local chunk is prefetched by the runtime system (the input
tasks artificially depend upon the execution of the global
barrier). When operating on a static C, each new local block
of tasks requires to load tiles of A or B from the network The
lookahead of 1 is sufficient to allow this load to happen in
parallel with the computation. However, when the algorithm
reaches the step where the current block of C must be switched
with the next one, it needs to upload to the GPU the new block
of C, together with all the corresponding tiles of A and B. This
rush of data is too high for the network to sustain it within
the execution of a single local block, and GPUs become idle
during each transition from one C block to another. As the
problem size continues to increase, that number of transitions
remains the same for a large set of problem and grid sizes,
while the overall duration of the computation increases, so the
performance increases again. With a lookahead `= 2, this drop
of performance is absorbed by the system much sooner: the
idling itself is reduced, by allowing more time to overlap the
communication of future tiles with the current computation.
We conducted experiments with a lookahead of 3, 4 and 5,
without measuring additional performance gains. A lookahead
of `= 8 exceeds the memory capacity of the machine.

Figure 3b represents the same data, but reports the per-
formance per GPU, and keeping only the runs with the best
lookahead for each measurement. The figure shows more
clearly that the task system is capable of reaching close to

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 200000 400000 600000 800000 1x106

P
e
rf
o
rm
a
n
c
e

 (
T
F
lo
p
/s
)

M = N = K

2x2 Proc. (12 GPUs)
4x4 Proc. (48 GPUs)
6x6 Proc. (108 GPUs)
8x8 Proc. (192 GPUs)

10x10 Proc. (300 GPUs)
12x12 Proc. (432 GPUs)

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 200000 400000 600000 800000 1x106

P
e
rf
o
rm
a
n
c
e

 (
T
F
lo
p
/s
)

M = N = K

Case a)
Case c1)
Case c2)

Look Ahead=1
Look Ahead=2

(a) Absolute Performance

 0

 1

 2

 3

 4

 5

 6

 7

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1x106

P
e
rf
o
rm
a
n
c
e

 P
e
r
G
P
U

 (
T
F
lo
p
/s
)

M = N = K

2x2 Proc. (12 GPUs)
4x4 Proc. (48 GPUs)
6x6 Proc. (108 GPUs)
8x8 Proc. (192 GPUs)

10x10 Proc. (300 GPUs)
12x12 Proc. (432 GPUs)

Case a)
Case c1)
Case c2)

(b) Performance per GPU

Fig. 3: Performance of double precision matrix-matrix product (PDGEMM) on Summit

peak performance, and of maintaining this performance when
the problem size does not fit in the accumulated GPU memory,
which is a unique feature at the time of this writing.

To validate the communication model of Section III, we col-
lected the amount of GPU communications during all previous
experiments. We measure independently how many bytes are
transferred from the RAM to each GPU (H2D transfer), from
any other local GPU to each GPU (D2D transfer), and from
each GPU to the RAM (D2H transfer). We then compare the
amount of data loaded per each GPU (H2D+D2H), with the
communication model, and represent this in Figures 4 and 5.
Figure 4 shows the number of tiles loaded, and the number of
tiles loaded from RAM only, as well as the number of tiles that
should be loaded according to the algorithm analysis, while
Figure 5 shows the same information as a ratio to the model
prediction. The x-coordinate for these two figures is any run
presented above, so they are sorted in an arbitrary order.

There were three case (a) measured, and the rest are cases
(c1) and (c2), evenly distributed. In all cases, approximately
95% of the number of tiles predicted to be loaded is indeed
loaded by a GPU. The number of actual loads is slightly
smaller than predicted by the model. This is due to the cache
policy of PARSEC when managing the GPU memory: when
a tile is loaded onto the GPU, it remains there unless the
space is needed. When it is time to allocate a space for a
tile, the PARSEC runtime needs to eject an old one that is
not currently in used. To do so, it maintains a LRU of the
currently not-in-use tiles, and ejects the least recently used.

The parameters b,c, and d are selected to use as much
memory as possible, but also to distribute the load evenly
between the blocks. Consequently, there are always a few
hundred tiles of GPU memory that are not in the active set of
a given local block. The PARSEC runtime takes advantage of
this slack in memory management to slightly increase the data
reuse, compared to the algorithm model, and this explains the
5% difference.

More importantly, this figure shows that about 50% of all
loads are device to device: only half of the memory loads are
issued to the RAM, and the other half targets another GPU that
already loaded the required tile. This is also a consequence of

the strong synchronization implemented in the algorithm: as
all GPUs work on chunks of updates that are at most 1 away
from each other, the probability that they require the same
data is high. The opportunistic approach that replaces a RAM
access by a device-to-device access hits half the time, reducing
by as much half the load on the bus to the RAM.

VI. RELATED WORK

The design of matrix product algorithms for high-
performance computing platforms has received considerable
attention in the recent years. On the theoretical side, several
authors have aimed at minimizing the number of communi-
cations for rectangular matrices of arbitrary sizes, since the
seminal paper of Hong and Kung on the I/O pebble game [12].
Due to lack of space, we refer to a recent report [15] which
provides a good overview and multiple references. Cache-
oblivious algorithms are surveyed in [10], [20].

Out-of-core algorithms for matrix product have been devel-
oped to optimize the number of transfers between hard disks
and RAM. The pioneering work of Toledo [22], [13] suggested
to load three equal-size square blocks of A, B and C into main-
memory, while a refined analysis [18] suggests to load the
largest possible block of C, one slice of B and to cycle tiles of
A. The chunked algorithm is an extension of this approach to
multi-GPU accelerated platforms, where the chunk is needed
to increase granularity and properly feed the GPUs.

On the practical side, many libraries provide an implementa-
tion of matrix-product for distributed-memory machines [19],
[17], [8], [7], [9]. Only SLATE [9] is capable of dealing with
multi-GPU accelerated nodes, and currently suffers from the
limitation that the whole C matrix must fit into the (cumulated)
memory of the accelerators. In other words, there must be a
single block of C, this is case (c1) of Section III-B3. Oour
implementation with PARSEC does not have any limitation.

VII. CONCLUSION

This work has introduced a simple and flexible matrix-
multiplication algorithm for multi-GPU accelerated
distributed-memory platforms. We designed a prototype
implementation that achieves a sophisticated management
of transfers from node memory to GPU memory, thereby

 0
 20000
 40000
 60000
 80000

 100000
 120000
 140000
 160000
 180000

 0 5 10 15 20 25 30 35 40 45

#
T
ile
s
 L
o
a
d
e
d

 o
n
to

 a
 G
P
U

Run (arbitrarily sorted)
Case a)
Case c1)
Case c2)

Measure (H2D + D2D)
Measure (H2D only)

Fig. 4: Number of tiles loaded onto a GPU

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 5 10 15 20 25 30 35 40 45

ra
tio

 o
f
til
e
s
 l
o
a
d
e
d

 t
o

 G
P
U
s

Run (arbitrarily sorted)
Measure (H2D + D2D)/Model
Measure (H2D only)/Model

Fig. 5: Comparison with the model

guaranteeing optimal data re-use. The GPUs are kept fully
active by using a partitioned version of the computations
into chunks whose size is large enough to launch many
GEMMs in parallel, while allowing all input data to fit
into GPU memory. Chunk data transfers are orchestrated
so as to prevent swapping, but with some overlap to avoid
starvation and unnecessary synchronization. Altogether, we
report preliminary performance results that squeeze 85% of
the peak performance of the platforms, and this even for
larger instances that do not fit into the cumulated memory of
the platform GPUs. This very good performance is achieved
within a short time-frame, owing to the flexibility and
extended capabilities of the PARSEC task runtime system. It
would be straightforward to implement the algorithm onto a
different GPU-accelerated distributed-memory platform.

Future work will be devoted to extending the algorithm to
handle the case of matrices with irregular tiles. More precisely,
in the TESSE framework [21], we have to multiply matrices
whose tiles can have very different sizes across rows and
columns.

ACKNOWLEDGEMENT

This research was supported by the Exascale Computing
Project (17-SC-20-SC), a collaborative effort of the U.S.
Department of Energy Office of Science and the National
Nuclear Security Administration. It used resources of the Oak
Ridge Leadership Computing Facility at ORNL, which is
supported by the Office of Science of the U.S. Department
of Energy under Contract No. DE-AC05-00OR22725.

REFERENCES

[1] R. C. Agarwal, F. G. Gustavson, and M. Zubair. A high-performance
matrix-multiplication algorithm on a distributed-memory parallel com-
puter, using overlapped communication. IBM Journal of Research and
Development, 38:673–682, 1994.

[2] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier. StarPU:
a unified platform for task scheduling on heterogeneous multicore
architectures. CCPE, 23(2):187–198, 2011.

[3] G. Bosilca, A. Bouteiller, A. Danalis, M. Faverge, T. Herault, and J. J.
Dongarra. PaRSEC: Exploiting Heterogeneity to Enhance Scalability.
IEEE Computing in Science Engineering, 15(6):36–45, 2013.

[4] G. Bosilca, A. Bouteiller, T. Herault, et al. Publicly available repository
of the code. https://bitbucket.org/herault/parsec%2dgemm%2dgpu.

[5] J. Choi, J. Dongarra, S. Ostrouchov, A. Petitet, D. Walker, and R. C.
Whaley. The design and implementation of the ScaLAPACK LU, QR,
and Cholesky factorization routines. Scient. Prog., 5:173–184, 1996.

[6] J. Choi, J. Dongarra, S. Ostrouchov, A. Petitet, D. Walker, and R. C.
Whaley. A proposal for a set of parallel basic linear algebra sub-
programs. In Applied Parallel Computing Computations in Physics,
Chemistry and Engineering Science, pages 107–114, 1996.

[7] Distributed Parallel Linear Algebra Software for Multicore Architec-
tures. DPLASMA. http://icl.utk.edu/dplasma.

[8] Elemental: C++ library for distributed-memory linear algebra and opti-
mization. Elemental. https://github.com/elemental/Elemental.

[9] M. Gates, J. Kurzak, A. Charara, A. YarKhan, and J. Dongarra. SLATE:
Design of a Modern Distributed and Accelerated Linear Algebra Library.
In SC’2019. ACM Press, 2019.

[10] K. Goto and R. A. v. d. Geijn. Anatomy of High-performance Matrix
Multiplication. ACM Trans. Math. Software, 34(3):12:1–12:25, 2008.

[11] T. Herault, Y. Robert, G. Bosilca, and J. Dongarra. RR-9289: Generic
matrix multiplication for multi-GPU accelerated distributed-memory
platforms over PARSEC. Technical Report hal-02282529, INRIA, 2019.

[12] J.-W. Hong and H. Kung. I/O complexity: the red-blue pebble game.
In STOC ’81: Proceedings of the 13th ACM symposium on Theory of
Computing, pages 326–333. ACM Press, 1981.

[13] D. Ironya, S. Toledo, and A. Tiskin. Communication lower bounds
for distributed-memory matrix multiplication. J. Parallel Distributed
Computing, 64(9):1017–1026, 2004.

[14] J. Kurzak, M. Gates, A. Charara, A. YarKhan, I. Yamazaki, and
J. Dongarra. Linear systems solvers for distributed-memory machines
with gpu accelerators. In Euro-Par 2019, pages 495–506, 2019.

[15] G. Kwasniewski, M. Kabić, M. Besta, J. VandeVondele, R. Solcà, and
T. Hoefler. Red-blue pebbling revisited: near optimal parallel matrix-
matrix multiplication. arXiv e-prints, page arXiv:1908.09606, Aug 2019.

[16] Oak Ridge National Laboratory. Oak Ridge Leadership Computing
Facility. https://www.olcf.ornl.gov/.

[17] Parallel Linear Algebra PACKage. PLAPACK. http://www.cs.utextas.
edu/users/plapack.

[18] J.-F. Pineau, Y. Robert, F. Vivien, and J. Dongarra. Matrix prod-
uct on heterogeneous master-worker platforms. In ACM SIGPLAN
PPoPP’2008, pages 53–62. ACM Press, 2008.

[19] Scalable Linear Algebra PACKage. http://www.netlib.org/scalapack.
[20] M. D. Schatz, R. A. van de Geijn, and J. Poulson. Parallel matrix

multiplication: A systematic journey. SIAM J. Scientific Computing,
38(6):C748–C781, 2016.

[21] Task-Based Environment for Scientific Simulation at Extreme Scale.
TESSE. https://www.nsf.gov/awardsearch/showAward?AWD%5FID=
1450300&HistoricalAwards=false.

[22] S. Toledo. A survey of out-of-core algorithms in numerical linear
algebra. In External Memory Algorithms and Visualization, pages 161–
180. American Mathematical Society Press, 1999.

[23] Top500. Top 500 Supercomputer Sites, June 2019. https://www.top500.
org/lists/2019/06/.

[24] R. A. van de Geijn and J. Watts. SUMMA: Scalable Universal Matrix
Multiplication Algorithm. Technical report, University of Texas at
Austin, Austin, TX, USA, 1995.

[25] S. Williams, A. Waterman, and D. Patterson. Roofline: an insightful
visual performance model for multicore architectures. Comm. ACM,
52:65–76, 2009.

APPENDIX: ARTIFACT DESCRIPTION

This appendix follows the form available to the Paper Artifact Description, as provided by the Author Kit, under the SC
Reproducibility Initiative.
Are there computational artifacts such as datasets, software, or hardware associated with this paper?

Yes
Summarize the experiments reported in the paper and how they were run:

The experimental method is described in details within the paper. Performance measurements were conducted on Summit,
hosted at Oak-Ridge National Laboratory.

The program evaluated implements Algorithm 2 over the PARSEC runtime system [3], using the Parameterized Task Graph
(PTG) DSL featuring the extensions described in Section IV of the paper. The algorithm implementation, the driver program
and the extensions are all available online in a fork repository at https://bitbucket.org/herault/parsec-dgemm-gpu, at commit
0fc319d07ad632005409004b407cd058891c0016. The PARSEC runtime, the GEMM operation and the driver program were all
compiled in optimized (Release) mode, using XLC 16.1.1-2, CUDA 9.2.148, Spectrum MPI 10.3.0.0 available on the Summit
programming environment. The BLAS3 GEMM kernel was the one provided in the cuBLAS library provided with CUDA.

All performance evaluation results presented below are obtained by measuring the time of executing the parallel double
precision real matrix matrix multiply (PDGEMM) with all data ready in the main memory of the nodes (and nothing on the
GPU memory). The operation is complete only when the resulting C matrix is back in the main memory of the node, where
it started. Each point is measured 5 to 10 times, and all figures showing performance present a Tukey box plot at the mark.
Software Artifact Availability:

All author-created software artifacts are maintained in a public repository under an OSI- approved license.
Hardware Artifact Availability:

There are no author-created hardware artifacts.
Data Artifact Availability:

There are no author-created data artifacts.
Proprietary Artifacts:

None of the associated artifacts, author-created or otherwise, are proprietary.
List of URLs and/or DOIs where artifacts are available:

https://bitbucket.org/herault/parsec-gemm-gpu
Relevant hardware details, e.g., system names, makes, models, and key components such as CPUs, accelerators, and
filesystems:

At the time of submission, Summit consists of 4,600 IBM AC922 compute nodes, each containing two POWER9 CPUs
and six Nvidia Volta V100 GPUs. The POWER9 CPUs have 22 cores running at 3.07 GHz, and 42 cores per node are made
available to the application. Dual NVLink 2.0 connections between CPUs and GPUs provides a 25GB/s transfer rate in each
direction on each NVLink, yielding an aggregate bidirectional bandwidth of 100GB/s.
Operating systems and versions:

Linux 4.14.0-115.8.1.el7a.ppc64le
Compilers and versions:

xl/16.1.1-2, spectrum-mpi/10.3.0.0-20190419
Applications and versions:

N/A
Libraries and versions:

cuda/9.2.148, essl/6.1.0-2
Key algorithms:

Algorithm 2 of this paper
Input datasets and versions:

N/A
Modifications made for the paper:

no modification of the hardware was done for this paper.

